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Features extracted by deep networks have been popular in many visual search tasks. This paper studies
deep network structures and training schemes for mobile visual search. The goal is to learn an effective
yet portable feature representation that is suitable for bridging the domain gap between mobile user pho-
tos and (mostly) professionally taken product images, while keeping the computational cost acceptable for
mobile based applications. The technical contributions are two-fold. First, we propose an alternative of the
contrastive loss popularly used for training deep Siamese networks, namely robust contrastive loss, where
we relax the penalty on some positive and negative pairs to alleviate overfitting. Second, a simple multi-task
fine-tuning scheme is leveraged to train the network, which not only utilizes knowledge from the provided
training photo pairs, but also harnesses additional information from the large ImageNet dataset to regular-
ize the fine-tuning process. Extensive experiments on challenging real-world datasets demonstrate that both
the robust contrastive loss and the multi-task fine-tuning scheme are effective, leading to very promising
results with a time cost suitable for mobile product search scenarios.
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1. INTRODUCTION
Shopping online on mobile devices has become increasingly popular in our daily life,
where consumers typically use keywords to search products on online shopping appli-
cations. Only using textual words, however, is not always enough for all different types
of goods in an ever expanding product database. For example, one may be interested in
a dress with the brand unknown. In such a case, it would be very helpful if a shopping
application supports visual search, so that the users can easily take a photo with their
phones and search visually the same products online.

Many companies, like Amazon, Google and Alibaba, have implemented similar func-
tions in their services. Nevertheless, automatically matching user photos to online
product images remains a challenging problem due to the following reasons. Firstly,
consumers usually use photos captured with their mobile phones as search queries,
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Fig. 1. An illustration of our approach. (a) Given positive pairs with a distance smaller than the pre-defined
margin (orange circle), the network is optimized based on the contrastive loss. (b) Given positive pairs with a
distance larger than the pre-defined margin, the network ignores them to avoid overfitting. (c) Given image
pairs from ImageNet, the network is optimized based on both contrastive loss and softmax loss. (d) In the
search process, we compute the cosine similarity of the extracted features to obtain the nearest samples to
the query as the search results.

which are usually taken under unconstrained environments, while the product im-
ages in online shopping databases are often shot in professional studios. Secondly,
products in user photos often have cluttered backgrounds or even partial occlusions.
Lastly, some online product images only contain part of the goods to show details to
consumers. This vast domain gap between consumer photos and in-shop images makes
the consumer-to-shop image search task highly challenging.

The choice of feature representation is critical for developing an effective product
image search system. In contrast to hand-crafted local image descriptors such as SIFT,
using deep neural networks to learn feature representations has recently been pop-
ularly adopted in many areas. In particular, for tasks like object detection [He et al.
2016; Ren et al. 2015], image segmentation [Farabet et al. 2013] and video classifica-
tion [Wu et al. 2015], the convolutional neural networks (CNNs) have produced solid
performance. Unlike visual recognition problems, where using a typical CNN structure
is normally sufficient, the problem to be tackled in this paper is cross domain image
matching. In such a setting, training images are often provided in pairs (same/different
product image pairs), while a typical CNN network is trained over the training images
provided in classes. To solve such an issue, we employ the Siamese network architec-
ture [Hadsell et al. 2006; Bell and Bala 2015; Jiang and Wang 2016] previously used
in the face image matching problem [Chopra et al. 2005], which can directly rank the
similarities between input image pairs by a contrastive loss function.

In this paper, we introduce a simple and effective alternative loss called robust con-
trastive loss on the adopted Siamese network, to bridge the vast domain gap between
consumer photos and online shopping images. The fundamental difference is that we
ignore the positive/negative image pairs that are visually too different in the training
process, as such pairs may incur overfitting and a poor generalization ability of the
learned model in our problem setting. Moreover, we propose a multi-task fine-tuning
method to tune the parameters of the Siamese network, which combines the training of
product images with general images from the ImageNet corpus. We show that optimiz-
ing the network both to match image pairs and to recognize images can improve the
performance of product search. This work is extended from a conference paper [Wang
et al. 2016] with a modified loss along with new evaluations and expanded discussions
on the efficiency of our proposed method.
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Figure 1 illustrates the proposed approach. The core component of the framework
is a deep neural network called Inception-6, which is based on the Inception-BN net-
work [Ioffe and Szegedy 2015] but has a more compact size designed for scenarios with
limited computing resource. In the training process, given a pair of images as input,
each goes through the Inception-6 network, optimization is performed based on the ro-
bust contrastive loss. Positive pairs with a distance larger than a pre-defined margin
(e.g., situation (b) in Figure 1) are ignored in the training process to avoid overfitting.
Moreover, for the image pairs from ImageNet (situation (c) in Figure 1), we apply the
proposed multi-task fine-tuning approach, which jointly optimizes the network param-
eters relying on the contrastive loss of image pairs and the softmax loss of each image.
After training, in the online search process (situation (d) in Figure 1), a feature rep-
resentation can be quickly computed for a query image using the learned Inception-6
network, and the search results can be obtained by simply computing its similarities
to the online product images. More details will be explained in Section 3.

With the robust contrastive loss and the multi-task fine-tuning scheme, the pro-
posed Inception-6 network can achieve outstanding accuracy on the challenging Exact
Street2Shop Dataset [Hadi Kiapour et al. 2015], Deepfashion Dataset [Liu et al. 2016],
and the Alibaba Large-scale Product Image Dataset 1. In the rest of the paper, we first
review related works, then elaborate the proposed approach, and finally discuss exper-
imental results on the three datasets.

2. RELATED WORKS
Product Image Search: Due to a growing number of online shopping applications,
there has been increasing interest in developing effective product image search sys-
tems in both industrial and academic communities. For instance, a mobile visual
search system using various local features and indexing methods has been proposed in
[He et al. 2012]. Street-to-shop photo search for similar clothing items has been stud-
ied in [Liu et al. 2012] using a part alignment approach. Using clothing recognition
and segmentation techniques, an approach which suggests multiple relevant clothing
products based on some given images has been proposed in [Kalantidis et al. 2013].
Based on contrastive loss, a Siamese network structure has been deployed in [Bell and
Bala 2015], which is similar to our approach but only used the regular contrastive loss.

Different from searching for similar products, [Hadi Kiapour et al. 2015; Liu et al.
2016] focused on finding exactly the same item in the street-to-shop scenario, which is
a more challenging problem that is also closer to a practical applications. Such a task
has also been studied in [Huang et al. 2015] using triplet loss [Schroff et al. 2015] and
visual attributes. In this paper, we tackle the same problem of exact product search
with a novel method tailored for undertaking this particular issue.

Feature Representations: The crucial part of product image search is extract-
ing discriminative feature representations. For instance, [Kuo et al. 2012] proposed a
semantic feature discovery approach through visual and textual clusters to derive se-
mantically related feature representations. Compared with the hand-crafted features,
learned feature representations using CNNs have demonstrated very impressive per-
formance on many problems [Sharif Razavian et al. 2014]. The deep feature embedding
trained to perform a specific task like object classification [Russakovsky et al. 2015]
could generate competitive performance on a broad range of related tasks [Donahue
et al. 2013] like fine-grained visual recognition, attribute detection, scene recognition,
and general image retrieval. Motivated by this fact, we build our Inception-6 network
based on the Inception-BN network [Ioffe and Szegedy 2015] and pre-train the network
with the ImageNet dataset [Deng et al. 2009] in our proposed approach.

1https://tianchi.aliyun.com/competition/introduction.htm?raceId=231510

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:4 Y.-G. Jiang et al.

Similarity Learning: Using the Siamese network [Hadsell et al. 2006] to learn
feature representation is related to similarity or metric learning. In this category, the
Online Algorithm for Scalable Image Similarity (OASIS) [Chechik et al. 2010] is one of
the most successful approaches, which learns a bilinear similarity measure over hand-
crafted features. Recently, a two-layer neural network on the top of the pre-trained
CNN network is employed to predict whether two features represent the same item
[Hadi Kiapour et al. 2015]. An end-to-end neural network using the regular contrastive
loss function for metric learning is applied in [Bell and Bala 2015]. Also based on
the Siamese network, [Huang et al. 2015] proposed a Dual Attribute-aware Ranking
Network (DARN) for feature learning.

Triplet loss [Schroff et al. 2015] has also been successfully applied to similarity
learning. [Liu et al. 2016] introduced a VGG based deep network based on triplet loss,
cross-entropy loss and l2 regression loss, which jointly predict clothing attributes and
landmarks. [Simo-Serra and Ishikawa 2016] adopted a similar multi-task approach
based on triplet loss, which designs a compact network for fast feature extraction. [Wu
et al. 2013] introduced a deep similarity learning approach for image search called
Online Multimodal Deep Similarity Learning (OMDSL) algorithm.

Due to the often existed label errors in the training data, a distance metric learning
approach which is more robust to the training data noise has also been studied in [Lim
et al. 2013]. Different from the previous approaches, our approach proposed in this
paper is based on the Siamese network, using a novel loss function and a multi-task
network fine-tuning scheme.

3. THE PROPOSED APPROACH
We first describe the Siamese structure based on Inception-6 and then introduce
our proposed robust contrastive loss function, followed by the multi-task fine-tuning
method with implementation details.

3.1. Siamese Network
Given an image, we use the feature extraction network to obtain the feature vector
~X = f(I,W ), where function f denotes the feature extraction network structure, which
computes the feature vector ~X based on network parameters W . We can have a rela-
tively reliable W by adopting parameters from the network pre-trained on a general
image dataset such as the ImageNet dataset, which has been examined in a recent
work [Hadi Kiapour et al. 2015]. However, as the parameters are trained for general
image classification, the feature distance between two images of different products
with high visual similarity can be closer than two photos of the same product, which
is undesirable for handling exact product search problem.

We design a Siamese network that contains two copies of the Inception-6 network
with shared weights W , as shown in Figure 2, to learn a better feature representation
that correctly maps the product image proximity to plausible feature distance. A con-
trastive loss function [Hadsell et al. 2006] is applied on the feature extraction layer of
the Inception-6 network, which can be written as:

Ls( ~Xp, ~Xq) = Y || ~Xp − ~Xq||22 + (1− Y )max(0,m2 − || ~Xp − ~Xq||22),

where ( ~Xp, ~Xq) is a pair of input features, m is the pre-defined margin, and Y is a
binary label indicating similarity of the given pair of input, which Y = 1 means that
the input pair contains the same product (i.e., a positive pair), otherwise Y = 0. In
the learning process, we apply the contrastive loss function to encourage the positive
pair to have a smaller distance and the negative pairs to have a larger distance. For
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Fig. 2. The Inception-6 network and Siamese network architectures. In our experiments, the output of
the average pooling layer has 1,024 dimensions, and the output of the fully connected layer has 21,841
dimensions.

a certain negative pair already having a distance greater than the margin, the loss
function should not impose any further penalty.

3.2. Robust Contrastive Loss
The robust contrastive loss also runs over pairs of inputs, which is similar to the reg-
ular contrastive loss. The loss is written as:

L( ~Xp, ~Xq) = Y min(m2, || ~Xp − ~Xq||22) + λ(1− Y )max(0,m2 − || ~Xp − ~Xq||22),

where ( ~Xp, ~Xq) is a pair of input features, m is the pre-defined margin, Y is a binary
label indicating similarity, and λ is a parameter balancing the trade-off of positive and
negative pairs.
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Fig. 3. Positive image pairs with small visual similarity values incur “undesirable” large gradient via the
original contrastive loss function, which may result in overfitting.

The main novelties of this loss function lie in the following two points. First, not only
the sufficiently separated negative pairs are less penalized, but also the penalty of pos-
itive pairs which have large feature distances is constrained in the robust contrastive
loss function. Second, we introduce a parameter λ in the loss function to balance the
penalties of positive pairs and negative pairs, which further enhances the flexibility of
this robust contrastive loss function.

The major reason behind the first extension is that positive pairs with large feature
distances often exist in real-world datasets, for example, the same object in signif-
icantly different scales, as shown in Figure 3. Optimizing the contrastive loss with
such pairs requires a huge modification to the network parameters, which is likely to
produce an overfitted model. In other words, forcing a model to fit some rare difficult
cases will result in poorer generalization capability and lower overall prediction accu-
racy. By excluding these training pairs with the pre-defined margin, this problem can
be largely alleviated. In addition, the reason of adding the λ parameter is to alleviate
the effect of imbalanced positive and negative training pairs, which always exist in
real-world applications. As will be shown in the experiments, balancing the contribu-
tions of positive and negative training pairs appear to be very important.

As shown in Figure 1 (c), in our proposed Siamese structure, the softmax loss is also
incorporated to learn the object classification results of the input images. Using an ad-
ditional loss can also help prevent overfitting caused by using the regular contrastive
loss, which has been verified in [Bell and Bala 2015]. We show that, by combining our
robust contrastive loss with the softmax loss, the generalization ability of the learned
network can be tremendously improved.

3.3. Multi-Task Fine-Tuning
The authors of [Bell and Bala 2015] used the category information of product images in
the softmax loss to regularize the fine-tuning procedure. Here we introduce a different
multi-task fine-tuning scheme to incorporate additional training samples.

As previously mentioned in Section 1, we apply the Inception-6 network presented
in Figure 2 in the Siamese structure. Compared with the traditional CNN networks
like AlexNet [Krizhevsky et al. 2012] and GoogLeNet [Szegedy et al. 2015], the batch
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normalization layers [Ioffe and Szegedy 2015] are added to the Inception-6 network,
which can help the network achieve comparable or even better accuracy with much
fewer training iterations. These extra layers eliminate the necessity of dropout layers,
which can also be viewed as a regularizer. Compared with the original Inception-BN,
the major modification of our Inception-6 is reducing the number of Inception layers
and also eliminating the number of filters in most of the layers, which lead to a com-
pact network architecture that is very suitable for resource-constrained mobile-based
applications. For pre-training of the Inception-6 network, we employ the ImageNet
dataset2 [Deng et al. 2009] which has 21,841 object categories. Our pre-trained net-
work achieves 0.315 top-1 accuracy over a randomly sampled validation dataset. Af-
ter pre-training on ImageNet, we construct the Siamese network by directly creating
a copy of the pre-trained Inception-6 and connecting both networks with the robust
contrastive loss. The robust contrastive loss function is applied on the average pooling
layers, as shown in Figure 2, while two classification softmax losses are simply adopted
from the pre-trained Inception-6 network.

Our multi-task fine-tuning scheme uses the images from ImageNet and their cate-
gory labels to “regularize” the fine-tuning procedure, which is different from the pre-
vious methods. The benefits of our proposed scheme are two-fold. First, our approach
no longer requires annotated category labels for product images. Secondly, the softmax
loss, by keeping the network to preserve the learned ImageNet embedding, can serve
as an auxiliary regularizer to prevent overfitting in the training process.

In the experiments, we construct three kinds of input image pairs to form the train-
ing and validation sets for the proposed multi-task fine-tuning. The positive pairs are
generated by using the ground-truth image item labels. The hard negative pairs are
constructed based on the top-retrieved false positives results. And, for the background
negative pairs, we randomly sample images from different ImageNet categories, en-
suring that no pair contains images of the same object. Since only the background
negative pairs have category labels, we set the gradient of the softmax loss to 0 for
the other two types of training pairs. Note that most of the background negative pairs
have feature distances greater than the pre-defined margin. In the training process,
the remaining background negative pairs serve as regularizers to prevent overfitting.
These three kinds of image pairs are generated with a ratio of approximately 1 : 1 : 4
to construct the training and validation sets.

To fine-tune the Siamese network, we set the learning rate to 5× 10−5, the momen-
tum to 0.9, and the weight decay to 10−4, respectively. The marginm and balance factor
λ in the robust contrastive loss function are set to 40.0 and 1.5 respectively in our fol-
lowing experiments if there is no additional description. The size of each mini-batch
is 128, which means 128 pairs of product images are processed by the network in a
single batch. The training procedure lasts 5 epochs maximally, and early stopping is
used based on the results on the validation set. For the input consumer photos, af-
ter resizing smaller edge to 256, we use the 224 × 224 center-cropped regions as the
inputs. For the online product images with bounding box labels, assuming that we
have a w × h bounding box in a W ×H image, the edge length of the cropped input is
min(max(w, h),min(W,H)).

After fine-tuning, the outputs of the last average-pooling layer (1,024 dimensions) of
the Inception-6 network are used as the feature representations of the input images.
We adopt the Cosine similarity to measure the proximity of two images. Notice that
other similarity measures or fast similarity search approaches (e.g., hashing [Lai et al.

2ImageNet Fall 2011 release:
http://www.image-net.org/archive/stanford/fall11 whole.tar
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2015; Liu et al. 2017]) are all applicable on top of our features. However, investigating
this is beyond the scope of our work.

The proposed approach is named as R. Contrastive in the following experiments. We
also evaluate the performance of a network fine-tuned by the robust contrastive loss
without the softmax loss and a network fine-tuned by the traditional contrastive loss
with the softmax loss, which are named as R. Contrastive w/o Softmax and Contrastive
respectively.

4. EXPERIMENTS
4.1. Experimental Setup

4.1.1. Dataset and Evaluation Measure. In most of our experiments, we use the re-
cently released Exact Street2Shop Dataset [Hadi Kiapour et al. 2015] and Deepfash-
ion Consumer-to-Shop Dataset [Liu et al. 2016], which focus on matching real-world
street/consumer photos and online product images of clothing items. Both datasets
contain two types of images: 1) street/consumer photos, which are taken by normal
end-users under natural, uncontrolled settings, and 2) shop photos, which are cloth-
ing item pictures from online shopping sites, mostly taken under more professional
conditions.

The Street2Shop dataset contains 20,357 street photos and 404,683 shop photos
including 204,795 different clothing items from 11 broad categories. It also provides
39,479 pairs of exact matching items between the street and the shop photos. Us-
ing the settings from [Hadi Kiapour et al. 2015], we divide the street-to-shop pairs
into training and testing sets with a ratio of approximately 4 : 1 in each category. In
the experiments, each search query includes a street photo with a bounding box in-
dicating the location of the target item in the photo and its category label. According
to [Hadi Kiapour et al. 2015], all search queries are executed within the corresponding
item category.

The Deepfashion Consumer-to-Shop Dataset contains 194,165 consumer photos and
45,392 shop photos. In total there are 239,557 clothes images from 33,881 clothing
items, provided with 195,540 annotated pairs between consumer and shop photos.
Each image is labeled with an object bounding box, 303 different types of fashion at-
tributes and 8 fashion landmarks. Using the setting provided by [Liu et al. 2016], we
split the pairs into training, validation and testing sets with a ratio of approximately
2 : 1 : 1. Different from the Street2Shop dataset where searches are performed within
each category, search tests in Deepfashion Consumer-to-Shop Dataset are executed
against all shop images from the validation and testing sets, according to [Liu et al.
2016].

In addition, to evaluate the generalization capability of our proposed method, we
also adopt the Alibaba Large-scale Product Image Dataset (see footnote 1 for its URL).
Since the testing labels of this dataset are not publicly available, we randomly split
the training street-to-shop pairs (1,417 products and 92,572 manually annotated pos-
itive pairs) into smaller training and testing sets with a ratio of 2 : 1 without product
overlap and evaluate the search accuracy. Similar to the Deepfashion Consumer-to-
Shop dataset, we do not impose any category constraint and all queries are compared
against all the online product images.

Top-k accuracy is adopted to measure the search performance. Given a search query,
the result is considered successful if at least one exact match item can be found from
the top-k returned images.

4.1.2. Alternative Methods for Comparison. We compare with the following alternative
methods to verify the effectiveness of our approach.
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(1) F. T. Similarity [Hadi Kiapour et al. 2015], which utilizes category-specific two-
layer neural networks to predict whether two features extracted by the AlexNet
represent the same product item. Selective search algorithm [Van de Sande et al.
2011] is applied to extend the training and testing sets. Note that the result of this
method on the Deepfashion dataset is evaluated on a network trained across all
categories, which is adopted in [Liu et al. 2016].

(2) AlexNet, for which we directly report the results in [Hadi Kiapour et al. 2015]. The
activations of the fully-connected layer FC6 (4,096-d) are used as the feature rep-
resentation. The network is trained on the 1000-category subset of the ImageNet
corpus [Russakovsky et al. 2015].

(3) FashionNet [Liu et al. 2016] consists of a VGG based network with multiple losses,
which learn clothes categories, attributes, clothes similarity and fashion landmark
simultaneously. Different from our approach, this method applied triplet loss. Net-
works are pre-trained on a subset of 300,000 images of the Deepfashion dataset
and then fine-tuned on the same dataset.

(4) Inception-6: our pre-trained Inception-6 network, where the outputs of the last
average-pooling layer (1,024-d) are used as the image representation.

(5) R. Contrastive w/o Lambda [Wang et al. 2016], which is the model proposed in the
previous conference version. The robust contrastive loss function without the λ pa-
rameter and softmax loss function is applied to fine-tune the Inception-6 network,
which is equivalent to R. Contrastive with λ = 1. We compare our R. Contrastive
with this setting to demonstrate the effectiveness of the λ parameter.

(6) Inception-6 with Attribute, which is our pre-trained Inception-6 network fine-tuned
on the Deepfashion dataset, where a cross-entropy loss is used to learn the 303
attribute labels provided in the Deepfashion dataset.

(7) R. Contrastive with Attribute, which uses the attribute information to further tune
the R. Contrastive model. Note that the cross-entropy loss from Inception-6 with
Attribute is also preserved in the multi-task fine-tuning process.

Cosine similarity is applied for all these methods except F. T. Similarity, which uses
the learned two-layer neural network to predict the similarity of two input images.
All the models are trained using clothes bounding boxes, except that the FashionNet
method uses the fashion landmark locations in the training process.

4.2. Results on the Street2Shop Dataset

Table I. Top-20 search accuracy (%) of our proposed approach and the alternative methods on the Exact
Street2Shop Dataset. Notice that the F. T. Similarity method uses category-specific models and selective ob-
ject proposals, while others use unified category-independent models and simple center crops of the images.

Category #Queries #Testing
Images AlexNet F. T.

Similarity Inception-6 Contrastive R. Contrastive
w/o Softmax

R. Contrastive
w/o Lambda R. Contrastive

Dresses 3,292 169,733 22.2 37.1 31.0 44.0 57.6 56.9 59.2
Footwear 2,178 75,836 5.9 9.6 10.9 11.2 12.7 13.1 14.8

Tops 763 68,418 14.4 38.1 30.7 41.5 45.1 48.0 47.1
Outerwear 666 34,695 9.3 21.0 16.4 21.5 21.3 20.3 20.7

Skirts 604 18,281 11.6 54.6 39.1 40.6 51.7 50.8 49.8
Leggings 517 8,219 14.5 22.1 17.0 15.3 16.6 15.9 20.1

Bags 174 16,308 23.6 37.4 30.5 46.6 42.5 46.6 46.0
Eyewear 138 1,595 10.1 35.5 34.8 39.1 23.1 13.8 26.1

Pants 130 7,640 14.6 29.2 22.3 17.7 19.1 22.3 21.3
Belts 89 1,252 6.7 13.5 24.7 19.1 25.6 20.2 19.8
Hats 86 2,551 11.6 38.4 30.2 23.3 19.6 24.4 29.0

Overall 8637 404,528 14.7 29.0 24.4 30.9 37.4 37.2 38.9

Results of our approach and the compared methods on the Exact Street2Shop
Dataset are summarized in Table I. Overall, our proposed approach achieves the best
average performance among all the methods under comparison, outperforming F. T.
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Fig. 4. Top-20 accuracy (left) and top-k accuracy (right) on the Street2Shop dataset under different experi-
mental settings and training iterations.

Similarity by around 10 percents. In the category-specific performance, our proposed
approach shows lower accuracy on product categories with fewer photos. This is be-
cause our approach uses a unified model, which has a bias to emphasize on the cate-
gories with more training data. Choosing a unified model instead of category-specific
models is mainly due to speed consideration. Additionally, base on our observation that
proposed Inception-6 network is clearly better than AlexNet, we can also use the F. T.
Similarity in conjunction with Inception-6 for further improvements. However, train-
ing category-specific models requires more time and is difficult to be implemented in
real-world applications as the category of the query is often unknown.

Comparing the last four columns of Table I, we can notice the significance contri-
butions of our robust contrastive (8 absolute percents of gain) and multi-task training
(around 2 absolute percents of gain) schemes. In the following, we further analyze var-
ious experimental results in detail.

The top-20 search accuracies of the last four approaches in Table I are visualized in
Figure 4, under different numbers of training iterations. The R. Contrastive w/o Soft-
max approach consistently performs worse than the R. Contrastive approach, showing
that it is necessary to apply multi-task approach by preserving softmax loss layer. Also,
compared to the R. Contrastive w/o Lambda, the R. Contrastive approach achieves a
better top-20 average accuracy, which verifies the effectiveness of using the λ parame-
ter. Comparing to the Contrastive approach, all approaches applying robust loss have
higher top-20 average accuracies. As aforementioned, positive pairs with large feature
distances may incur overfitting of the Contrastive approach, which explains its poorer
performance shown in the experiments. The performance of all approaches saturates
at some time points and then decreases, as shown in the figure, which indicates that
using early stopping strategy is also necessary to avoiding overfitting.

We also plot the top-k accuracy of our approach in Figure 4, with k ranging from
1 to 50. As expected, by applying our proposed robust loss and multi-task training
scheme, we obtain consistently increasing accuracies under all top-k settings. Notice
that after applying R. Contrastive approach, nearly half of the queries succeed in the
top-50 retrieved images.

Figure 5 further shows the top-20 accuracy under different λ parameters and train-
ing iterations, using the R. Contrastive approach. Results indicate that an appropriate
λ parameter is critical to obtain a good performance in a reasonable training time. A
small balance parameter cannot fully utilize the positive samples, while a large bal-
ance parameter may incur unnecessary longer training time. We leave more discus-
sions on the selection of this key parameter after reporting the results on the Deep-
fashion dataset in the next subsection.
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Fig. 5. Top-20 accuracy on the Street2Shop dataset (left) and average distance of the sampled ImageNet
pairs (right) in the training process on proposed R. Contrastive models under different balance parameters
and training iterations.

Query Groundtruth Retrieval Results

Fig. 6. Example search results of our proposed approach on the Street2Shop Dataset. Top three rows are
successful queries (at least one correct match is found within top-20 returned images, marked by the green
check mark icon) and search results, while the bottom three rows are failure queries with ground-truth
matches and top-retrieved results.

We also monitor the average distance of the sampled ImageNet pairs during the fine-
tuning process, as shown on the right of Figure 5. Since the ImageNet pairs act as the
regularizer, their average distance should remain constant during an ideal fine-tuning
process. Results show that by increasing the weight of the balance factor, we can better
suppress the change of the ImageNet pair distance.

Some example search results on Street2Shop dataset are shown in Figure 6. Top
three rows are the successful search examples, while the bottom three rows are failure
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Fig. 7. Top-20 accuracy (left) and top-k accuracy (right) on the Deepfashion Consumer-to-Shop dataset
under different experimental settings and training iterations.

cases. Reasons behind a failure case include poor lighting environment and defocused
image, highly occluded target or simply the lack of visual characteristics of the spe-
cific product, shown in the 4th, 5th and 6th row in Figure 6, respectively. From some
successful queries, we observe that sophisticated patterns on the products are helpful
as they are visually distinctive. (e.g., the query image of 3rd row severely suffers from
poor lighting, which is still correctly identified due to its unique pattern.)

4.3. Results on the Deepfashion Consumer-to-Shop Dataset

Table II. Top-20 search accuracy (%) of our proposed
approach and the alternative methods on the Deepfash-
ion Consumer-to-Shop Dataset. Notice that FashionNet
method uses predicted fashion landmarks for object lo-
calization, while others simply use the center crops of
the images.

Approach Top-20 Accuracy
F. T. Similarity 6.3

Inception-6 14.6
Contrastive 16.7

R. Contrastive w/o Softmax 17.4
R. Contrastive w/o Lambda 17.5

R. Contrastive 18.0
FashionNet 18.8

Inception-6 with Attribute 20.4
R. Contrastive with Attribute 23.0

Table II summarizes the results of both our approach and the compared methods
on the Deepfashion Consumer-to-Shop Dataset. Since the Deepfashion dataset comes
with rich fashion labels, including bounding box, fashion attributes and fashion land-
marks, experiments are conducted under two training label settings: without fashion
attributes and with fashion attributes. Above the horizontal line are methods with-
out using the attributes information, while below are methods fine-tuned using the
303 attributes in the dataset. Under both settings, our approach outperforms all the
compared methods.

To provide a clear comparison of the overall performance of all the approaches, we
also plot the top-k accuracy of our proposed approach and the compared methods in
Figure 7. As shown in the figure, in the experiments without fashion attributes, sim-
ilar to the results on the Street2shop dataset, the R. Contrastive approach achieves
the best performance. Compared with the F. T. Similarity approach, the pre-trained
Inception-6 improves the accuracy from 6.3% to 14.6%. Improvements of both robust
contrastive and multi-task fine-tuning are around 1 to 2 absolute percents, which are
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Fig. 8. Top-20 accuracy on the Deepfashion Consumer-to-Shop dataset (left) and average distance of the
sampled ImageNet pairs (right) in the training process on proposed R. Contrastive models under different
balance parameters and training iterations.

smaller but still fairly significant considering the average accuracy is lower than that
on the Street2shop dataset. Despite the fact that we did not employ attribute infor-
mation in the training process, the best performance of R. Contrastive (18.0%) is still
close to the FashionNet approach (18.8%), which again highlights the effectiveness of
our approach.

With fashion attributes, R. Contrastive and Inception-6 outperform the Fashion-
Net approach by 1.6 and 4.2 absolute percentages, respectively. Compared with the R.
Contrastive and Inception approaches, adding attribute information increases the per-
formance by 5.0 and 5.8 absolute percents, respectively, which suggest the flexibility
of our approach by using additional information in the multi-task fine-tuning stage.
Notice that our approach only employs simple center cropping in testing, adding lo-
calization methods like selective object proposals or fashion landmark prediction will
further improve the model performance.

Figure 8 shows the top-20 accuracy under different λ parameters and training it-
erations using the R. Contrastive approach. Based on the results in this figure and
also in Figure 5, we observe that Lambda=1.5, which is actually proportional to the
remaining positive:negative pair ratio3, offers consistently good results. This result
not only shows that the approach is not very sensitive to this parameter setting, but
also provides a way to predict a good parameter before model training. The distance
changes of the ImageNet pairs remain similar to the observations from the results on
the Street2Shop dataset (Figure 5).

Comparing the trends of the search performance and the average distance in Fig-
ure 5 and Figure 8, we can see that the performance degradation is synchronized with
the sudden growth of the average distance. This indicates that we can use the average
distance of the testing set to monitor overfitting on-the-go while training, which is very
helpful in real-world applications without sufficient annotated validation and testing
data.

Figure 9 shows some example search results on the Deepfashion dataset. We can ob-
serve that, different from the Street2shop dataset, shop images in Deepfashion dataset
have better visual similarity to the consumer photos, which explains the smaller im-
provements by the contrastive loss.

3By calculating the feature distance of all the training pairs and filtering the pairs that have larger dis-
tance than the pre-defined margin, the ratio of the remaining positive and negative pairs is 1.58:1 in the
Street2Shop dataset and 1.34:1 in the Deepfashion dataset.
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Query Retrieval ResultsQuery Retrieval Results

Fig. 9. Example search results of our proposed approach on the Deepfashion Dataset (left) and the Alibaba
Large-scale Product Image Dataset (right).

Table III. Top-20 search accuracy (%) of our pro-
posed method and the state-of-the-art results on the
Alibaba Large-scale Product Image Dataset.

Approach Top-20 Accuracy
AlexNet 62.0

Inception-6 65.7
Contrastive 69.5

R. Contrasive w/o Softmax 70.1
R. Contrasive w/o Lambda 71.9

R. Contrasive 72.3

4.4. Results on the Alibaba Dataset
To verify the generalization capability of the learned network, we also examine our
proposed approach on the Alibaba Large-scale Product Image Dataset. As shown in
Table III, we observe similar performance trend to that on the Street2Shop dataset and
Deepfashion dataset. The improvement of both robust contrastive loss and softmax
are around 2%, which again verifies the effectiveness of our approach. We also run
the same R. Contrastive approach with only samples from this dataset to estimate
the benefit from using the ImageNet samples, where the softmax loss is evaluated
using the class labels (604 classes) of the Alibaba images. We reached 69.2% in top-20
accuracy, which is 3 absolute percents lower than R. Contrastive with ImageNet data
(72.3%).

Similar to the Deepfashion dataset, we obtain relatively smaller improvement by
using our R. Contrastive approach, which is mainly because the labels are cleaner
with fewer errors in this dataset. In other words, our approach not only ignores the
dissimilar positive pairs but also excludes wrongly labelled “false” positive pairs from
training data to improve the results. Several example search results are shown in
Figure 9.

4.5. Visualizing the Feature Embedding Space
To get a clear visual impression of our learned fashion embedding, we apply the t-SNE
algorithm [Maaten and Hinton 2008] to visualize the embedding space. The features
extracted by the Inception-6 network are projected to 50 dimensions using the PCA
algorithm to reduce the calculation cost. Then we use the t-SNE algorithm to further
compress the 50 dimensional features into a 2-d space. Lastly, we randomly select 5,000
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Fig. 10. Visualization of image proximity using features from the ImageNet-trained Inception-6 network
(left) and our proposed approach with the Siamese network (right). See texts for more discussions.

images from the Street2Shop dataset, including both street photos and shop photos,
and place them into their corresponding 2-d locations.

Figure 10 shows the results of our visualization. The ImageNet pre-trained
Inception-6 network tends to group the photos with high visual similarities together.
In contrast, the fine-tuned Inception-6 based on our proposed approach tends to place
the photos of the same products in close proximity, regardless of whether they are
street photos or shop photos, which is important in product search applications.

4.6. Efficiency
Our experiments are conducted on a server with an Intel i7-6850K CPU and two
Nvidia GTX Titan X Pascal GPUs. Fine-tuning a Siamese network with the proposed
scheme normally requires 5 to 8 hours, depending on the size and complexity of the
dataset. Compared with the model training and fine-tuning, which can be executed
off-line, feature extraction time and the memory usage are way more important in
real-time mobile visual search scenario.

Since the computational resource on mobile devices is limited, maintaining a good
performance with minimal computational cost is crucial in mobile visual search. To
evaluate the efficiency of our proposed Inception-6 network and robust contrastive
loss, we compare with other network architectures by their feature extraction time
on the GPU server and three mobile devices (iPhone 6 Plus, iPhone 7 and iPad 5th
generation). The feature extraction code is based on the MXNet [Chen et al. 2015] 0.8
release.

As a baseline, we employ the AlexNet for its compact size. We also use the full
Inception-BN network trained on the full ImageNet dataset released by DMLC (de-
noted as Inception-BN-21k) and fine-tuned with our R. Contrastive approach4. From
Table IV, the Inception-BN-21k yields the best performance but is also the most time-
consuming option, while AlexNet has the fastest speed but the lowest accuracy. Our
proposed Inception-6 is well balanced between accuracy and time consumption, pro-
ducing a competitive accuracy with acceptable time cost on the mobile devices.

Once the features are extracted, many approaches like hashing can be adopted to
accelerate the search process, which is however beyond the scope of this work. Using

4We adopt the same training setting with our Inception-6 network, except that we scaled the margin to
m = 30 based on the average distance of the randomly sampled ImageNet pairs
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Table IV. Time consumption of our proposed approach and the alternative methods tested on the Exact
Street2Shop Dataset.

Time per Image (sec) Top-20 Search Accuracy
Model Server iPhone 6 Plus iPhone 7 iPad 5th on the Street2Shop dataset

AlexNet 0.0023 1.5 0.6 0.6 14.7
Inception-6 0.0044 3.4 1.2 1.5 24.4

Inception-BN-21k 0.0117 7.3 3.2 3.7 23.5
Inception-6

(R. Contrasive) 0.0044 3.4 1.2 1.5 38.9

Inception-BN-21k
(R. Contrasive) 0.0117 7.3 3.2 3.7 40.4

the brute-force exhaustive search, it requires 150 ms to finish the feature extraction
and search of a query on the server (one single GPU for feature extraction and multi-
thread CPU for search) for both Street2Shop and Deepfashion datasets.

5. CONCLUSION
In this paper, we have presented an approach based on neural networks to tackle the
problem of matching a consumer-taken photo to the images of the same product in
online shopping websites. To prevent the overfitting issue caused by some visually
very different positive/negative pairs and meanwhile alleviate the effect of label noise,
we proposed the robust contrastive loss to exclude such training samples in the net-
work training process. We also proposed a multi-task fine-tuning scheme to provide
additional data from the ImageNet dataset with a softmax loss for improved results.
Our proposed approach clearly outperforms the compared methods on three real-world
datasets. The time cost experiments further demonstrated that our approach is suit-
able for real-world applications with strict computational speed requirements.

While our results show that ignoring some positive pairs with large visual distances
can help improve the overall results, the learned model will be limited when facing
these ignored difficult cases during testing. We conjecture that using advanced tech-
niques like better feature learning and fine-grained object segmentation may further
improve the results, which is a promising direction of future research.
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