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Figure 1. Our Surrogate Gradient Field (SGF) can edit images with diverse modalities of control by manipulating the latent codes
of GANs. In the first row, we adjust the facial attributes of a person’s photo. In the second row, we use natural language sentences to alter
the color and the shape of a generated flower. In the last row, we edit keypoints of a generated anime character to modify head poses. We
use StyleGAN2 [20] to generate the images above.

Abstract

Generative adversarial networks (GANs) can generate
high-quality images from sampled latent codes. Recent
works attempt to edit an image by manipulating its under-
lying latent code, but rarely go beyond the basic task of at-
tribute adjustment. We propose the first method that enables
manipulation with multidimensional condition such as key-
points and captions. Specifically, we design an algorithm
that searches for a new latent code that satisfies the target
condition based on the Surrogate Gradient Field (SGF) in-
duced by an auxiliary mapping network. For quantitative
comparison, we propose a metric to evaluate the disentan-
glement of manipulation methods. Thorough experimental

*Equal contribution.

analysis on the facial attribute adjustment task shows that
our method outperforms state-of-the-art methods in disen-
tanglement. We further apply our method to tasks of var-
ious condition modalities to demonstrate that our method
can alter complex image properties such as keypoints and
captions.

1. Introduction

Generative Adversarial Networks [9], or GANs, are one
of the most popular and effective methods for generating
high fidelity images. In the simplest form, the generator
model creates a random image from a latent code sampled
from the latent space. To create an image that matches some
target properties, however, we need a method to condition



the generated image on such properties. In other words, the
method should be able to incorporate a piece of information,
such as attributes, keypoints, or even an interpretation of the
image in a natural language, into the generation of the im-
age. Intuitively, to condition the image, we can instead con-
dition its latent code on the same information, in an attempt
to generate an image that satisfies the target properties.

As an increasingly popular approach to image modifica-
tion [1] and GAN interpretation [31], latent space manipu-
lation is a type of approach that bases on varying the latent
codes of images. The generator maps manipulated latent
codes to images that hopefully match target properties. To
be specific, InterFaceGAN [31] and GANSpace [11] find
meaningful directions in latent space, and vary latent codes
along these directions to adjust the attributes of images.

Although existing methods explore the potential applica-
tion of latent space manipulation, these methods still suffer
from the following limitations. To begin with, the disen-
tanglement of manipulation can be limited. Adjustment of
one attribute of an image is occasionally accompanied by
some undesirable shifts in other attributes. Moreover, exist-
ing methods are restricted to one-dimensional conditioning.
In other words, these methods excel in adjusting attributes
such as smiling or not, female or male, each of which can be
parameterized by a scalar condition. However, these meth-
ods do not provide a general solution to complex modifica-
tions that condition on multidimensional information (e.g.
the pose of a human or the caption of an image).

We suggest that there is another line of latent space ma-
nipulation based on optimization. Using a generator and an
image classifier, we can optimize the latent code for mini-
mizing the difference between the properties of the current
image and the target properties. Empirically, this simple
approach does not work as expected because both the clas-
sifier and the generator are highly non-convex deep neural
networks. As a result, the gradient field in the latent space
may be misleading, and thus the optimization of a latent
vector is often trapped in a local optimum.

To overcome the difficulty of the optimization-based ap-
proach, we propose a novel method for latent space ma-
nipulation. In our method, we train an auxiliary mapping
network that induces a Surrogate Gradient Field (SGF). We
design an algorithm that uses SGF in search of a new latent
code that satisfies a target condition. For comparison with
existing works, we design a metric that evaluates the disen-
tanglement of a manipulation method. Based on the metric,
we conduct thorough quantitative experiments and a user
study to demonstrate that our method outperforms state-of-
the-art methods in the disentanglement of manipulation. As
the first work towards multidimensional conditioning with
latent space manipulation, our method successfully modi-
fies images utilizing keypoints and captions, illustrated with
qualitative results.

To summarize our main contributions,

• We propose the first latent space manipulation method
of GANs that supports multidimensional conditioning.

• We conduct quantitative experiments and a user study
on the task of facial attribute adjustment to demon-
strate that our method outperforms state-of-the-art
methods in disentanglement.

• We apply our method to latent space manipulation us-
ing keypoints and captions, justifying our method as a
unified approach for various modalities of condition-
ing.

2. Related work

Generative Adversarial Networks. GAN [9] has shown
great potential on generating photo-realistic images [27,
18]. It has been applied to a wide range of tasks includ-
ing image editing [4, 31], image translation [15, 36] and
super-resolution [22]. Recent works have made tremen-
dous progress on generating high-quality photo-realistic im-
age [3, 10, 6, 18, 19]. Among the existing works on im-
age generation, one of the most well-known works is Style-
GAN [19] which introduces a stacked architecture that en-
ables high-resolution image generation with fine-grained
control. Its recent follow-up work StyleGAN2 [20] further
improved the generated image qualities and achieved state-
of-the-art image synthesis results. Our work greatly bene-
fits from the progress of the GAN because we can apply our
method to various GAN models.
Manipulation on Latent Vector. Early GAN works [27]
have already discovered that generated images can be se-
mantically edited by applying vector arithmetic on the latent
space. Since vector arithmetic-based approach is straight-
forward and model agnostic, recent works continue to ex-
plore in this direction. Existing methods can be categorized
into two classes: supervised methods [31, 26, 8] and unsu-
pervised methods [11, 32]. Supervised methods use an extra
classifier to label properties of generated images. Shen et
al. [31] train a linear SVM on pairs of latent vectors and
labels to find a decision hyperplane. Latent vectors are then
moved along the normal direction of the decision hyper-
plane for adjusting attributes. For multiple attributes, their
method can sacrifice performance for disentanglement by
orthogonalizing each direction vector. On the other hand,
unsupervised methods directly find semantically meaning-
ful directions by PCA [11] or self-supervised learning [32].
Besides vector arithmetic-based approaches, some more re-
cent works [16, 2] introduce non-linear transformations and
generative modelings in the latent space to adjust multiple
attributes simultaneously.

In contrast with existing methods, our approach utilizes
a neural network to model complicated semantic relation-
ships between latent vectors and corresponding predictions.



We further extend the scope of conditions to a wider va-
riety of vector representations. We show that our method
achieve a higher degree of disentanglement compared with
other methods.

3. Method
3.1. Problem Definition

LetG : Z → X be a pretrained GAN generator. Z ⊆ Rd

is the d-dimensional latent space * , andX denotes the space
of generated image. The classifier network C : X → C pre-
dicts semantic properties c ∈ C ⊆ Rnc from a generated
image x ∈ X . Although C can be as simple as a multi-label
classifier, where Rnc stands for the space of nc semantic
attributes, the setting actually applies to any embedding in
Euclidean space. For example, keypoints detector with np
points on a 2D image can be regarded as an embedding to
R2np .

Define Φ(z) := C(G(z)) for convenience. Suppose we
have a latent vector z0 ∈ Z , its corresponding properties
c0 = Φ(z0) and target properties c1. Our goal is to find
z1 ∈ Z such that Φ(z1) = c1.

3.2. Learning the Auxiliary Mapping

A powerful generator such as StyleGAN2 [20] may eas-
ily generate infinite images that match the properties c1. We
would like to attain the desired properties c1 with minimal
unwanted modification to the image. Intuitively, inZ space,
z0 can be slightly perturbed to get a z1 that is sufficiently
close to z0. Empirically, the gradient field of Φ is not suit-
able for perturbing z0, so we seek to replace it with a new
gradient field.

As a preparation, we introduce an auxiliary mapping F :
Z × C → Z satisfying

F (z,Φ(z)) = z,∀z ∈ Z (1)

In our implementation, F is a multi-layer neural network,
and trained using a simple reconstruction loss. Inspired by
Behrmann et al. [5], we use spectral normalization [24] in
F so that its Lipschitz constant Lip(F ) < 1. As a result,
the operator norm of its Jacobian is less than 1 [12]. Fur-
thermore, for any eigenvalue λF of the Jacobian of F and
the corresponding unit eigenvector xF , we have ‖λFxF ‖ =∥∥∥∂F (z,c)

∂z xF

∥∥∥ ≤ ∥∥∥∂F (z,c)
∂z

∥∥∥
op
< 1, where ‖·‖op denotes op-

erator norm. Therefore, the spectral radius of the Jacobian
of F satisfies

ρ

(
∂F (z, c)

∂z

)
≤
∥∥∥∥∂F (z, c)

∂z

∥∥∥∥
op

< 1 (2)

*For StyleGAN, a latent vector z is first sampled from a Gaussian dis-
tribution N (0, Id) in Z-space, and a fully-connected neural network then
transforms it into a new latent vector w in W-space. In our formulation, Z
can be either Z-space or W-space.

Figure 3 shows the training pipeline of F .

3.3. Manipulation with Surrogate Gradient Field

To formalize the perturbation of z0, we define a path
z(t), t ∈ [0, 1] in the latent space that starts from z0 and
ends at z1, i.e. z(0) = z0 and z(1) = z1. Here we make
several assumptions about path z(t).

1. The generator is capable of generating an image that
match the desired properties:

∃ z1 ∈ Z s.t. Φ(z1) = c1

2. While traversing the path, the properties Φ(z(t)) of the
generated image changes at a constant rate, i.e.

dΦ(z(t))

dt
= c1 − c0 (3)

3. ∀ z ∈ Z ,
∂F (z,Φ(z))

∂c
6= 0 (4)

The assumptions above suggests that 1. our task is well-
posed, 2. path z(t) is a smooth interpolation between the
original properties and the target properties, and 3. F is not
a trivial mapping that just map any (z, c) pair to z.

Now we derive the surrogate gradient field of Φ. Using
Eq. (1) of auxiliary mapping F , we can rewrite the path as

z(t) = F (z(t),Φ(z(t))) (5)

Take time derivatives on both sides, we have

dz(t)

dt
=

dF (z(t),Φ(z(t)))

dt

=
∂F (z(t),Φ(z(t)))

∂z

dz(t)

dt
+
∂F (z(t),Φ(z(t)))

∂c

dΦ(z(t))

dt

=
∂F (z(t),Φ(z(t)))

∂z

dz(t)

dt
+
∂F (z(t),Φ(z(t)))

∂c
(c1 − c0)

We plug in assumption 2 in the last step. Organize dz(t)
dt

to the left hand side and rearrange the last equation, we have
dz(t)

dt =
(
I− ∂F (z(t),Φ(z(t)))

∂z

)−1
∂F (z(t),Φ(z(t)))

∂c (c1 − c0),
the invertibility implied by Eq. (2) [12].

Define surrogate gradient field H as

H(z):=

(
I− ∂F (z,Φ(z))

∂z

)−1
∂F (z,Φ(z))

∂c
(c1 − c0) (6)

Note that H(z) 6= 0,∀z ∈ Z because of Eq. (2) and as-
sumption 3. We arrive at our ordinary differential equation,{

dz(t)
dt = H(z(t)), t ∈ [0, 1]

z(0) = z0

(7)



Algorithm 1 Manipulating GAN with surrogate gradient
field
Input: GeneratorG, ClassifierC, auxiliary mapping F , or-

der of the series expansion m, iteration number n, initial
latent vector z0, target attributes c1, step size λ
c0 ← C(G(z0))
δc ← λ(c1 − c0)
c(0) ← c0
for i = 1, · · · , n do

δ
(0)
z ← ∂F

∂c (z(i−1), c(i−1))δc

δz ← δ
(0)
z

for j = 1, · · · ,m do
δ

(j)
z ← ∂F

∂z (z(i−1), c(i−1))δ
(j−1)
z

δz ← δz + δ
(j)
z

end for
z(i) ← z(i−1) + δz
c(i) ← C(G(z(i)))
if c(i) close to c1 then

return z(i)

end if
end for
return z(n)

Figure 2. Pseudocode of our manipulation algorithm. The
outer loop is a simple forward Euler ODE solver, which computes
the movement δz , and accumulate to the current latent vector z(i).
The classifier predicts the properties of image at each time step to
determine when to stop. The inner loop approximates the matrix
inversion term in Eq. (6) using the Neumann series.

3.4. Numerical Solution of the ODE

To compute our goal z(1), we solve the initial value
problem (Eq. (7)) using a numerical ordinary differential
equation solver. Nevertheless, it is time consuming and po-
tentially numerically unstable to calculate the Jacobian of
F and the matrix inversion when evaluating H(z) (Eq. (6)).
Instead, we apply Neumann series expansion [12] to ap-
proximate the matrix inversion. For a matrix X that satisfies
ρ(X) < 1, the following expansion converges

(I−X)−1 = I + X + X2 + . . .

Another obstacle to numerical computation is that, in
reality, the path may deviates from the assumption 2. To
be specific, at step i with a step size of λ, Φ(z(iλ)) does
not precisely equals Φ(z((i − 1)λ)) + λ(c1 − c0). Two
source of error leads to the problem: one from the numer-
ical solver, and another from not having a perfect F which
has F (z,Φ(z)) = z exactly everywhere. To overcome this
difficulty, in practice we fix the step size λ but do not neces-
sarily stop the iteration process at step 1/λ. The algorithm
checks the properties ci = Φ(z(iλ)) at each step, and stops

Auxiliary
Mapping          

Classifier

Training

Sampling

Generator  

Inference

SGF 

Figure 3. Overview of our method. PG denotes the distribution of
latent vectors in a latent space, which can be either Z-space or W-
space in the case of StyleGAN. We sample (z, c) pairs, and train
the auxiliary mapping F using MSE loss. The surrogate gradient
field H navigates the latent vector to the target in the inference
stage.

only when ci is sufficiently close to the target c1, unless it
reaches the maximum step number. Algorithm 1 shows the
summary of the manipulation procedure.

4. Experiments
4.1. Compared Methods

We compare the proposed method SGF with two state-
of-the-art latent space manipulation methods: Interface-
GAN [31] † and GANSpace [11] ‡. All compared methods
are tested using the official code release.
InterfaceGAN. We retrain the InterfaceGAN model for
each control attribute. Since InterfaceGAN can only learn
one binary attribute at once, we train on each attribute in-
dependently with the same training data of our SGF strictly
following the training setting in the paper.
GANSpace. For GANSpace, we use the pre-selected con-
trol vectors released in its official code and only apply
changes to the recommended StyleGAN2 layers.

4.2. Generator Models and Datasets

Choosing different combinations of the latent space Z
and condition space C, we set up four distinct settings for

†https://github.com/genforce/interfacegan
‡https://github.com/harskish/ganspace



latent space manipulation to demonstrate that our method
can control different generator models under various types
of conditions.

For the generator, we test StyleGAN2 [20] and Pro-
gressiveGAN [18]. StyleGAN2 experiments are conducted
on W-space, while ProgressiveGAN experiments are con-
ducted on Z-space. To further demonstrate that our method
can accept various types of conditions besides image at-
tributes, we conduct experiments on two other represen-
tative properties (i.e., keypoints and image captions). We
only show the results of our SGF method for keypoints and
image captions, since other methods are not able to utilize
these conditions.

FFHQ-Attributes. We adopt a pretrained FFHQ Style-
GAN2 [20] as the generator for experiments on facial at-
tributes editing. For the classifier, we fine-tune a pretrained
SEResNet50 [13] model from VGGFaces2 [7] dataset. We
construct the training data for the classifier model by la-
beling 100K randomly sampled images with the Azure
Face API §, and combine them with labeled faces from the
CelebA [23] dataset. With duplicate labels removed, the fi-
nal classifier can predict 48 facial attributes. Among them,
we select four representative attributes, which includes both
highly entangled attributes (“gender” and “bald”) and less
entangled ones (“smile” and “black hair”), for quantitative
comparisons and the user study.

CelebAHQ-Attributes. To compare the performance on
models other than StyleGAN, we also test a Progressive-
GAN [18] pretrained on the CelebAHQ dataset. We use the
same facial attributes classifier as the FFHQ-Attributes in
this experiment.

Anime-KeypointsAttr. We follow [17, 30] to build a
high-quality Japanese anime-face dataset and train a Sty-
cleGAN2 on it. We base on the animeface-2009 ¶ and il-
lustration2vec [30] to create facial landmarks keypoints and
image attributes as the conditions for manipulation.

Flowers-Caption. Previous works have shown great suc-
cess on training GANs conditioned on text captions [34].
However, to our best knowledge, SGF is the first method
that can utilize text captions to conditionally manipulate la-
tent vectors of a pretrained GAN. Our experiment is based
on a pretrained image generator model [35] on Oxford-102
Flowers dataset [25]. The image caption generator is an
attention-based caption model [33] trained on flower cap-
tion dataset [28]. To fit our pipeline for latent space ma-
nipulation, we use the sentence transformer [29] to encode
generated captions into vectors.

§https://azure.microsoft.com/en-us/services/cognitive-services/face/
¶https://github.com/nagadomi/animeface-2009
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Figure 4. Illustration of the Manipulation Disentanglement
Score (MDS). (a) Manipulating the color of a blue circle to green
while keeping the shape unchanged. (b) MDS is defined as the
AUC of Manipulation Disentanglement Curve (MDC).

4.3. Implementation Details

The auxiliary mapping F is implemented with an N -
layer MLP combined with AdaIN [14]. We also apply spec-
tral normalization [24] to all fully-connected layers. We
describe the detail of network architectures in the supple-
mentary material. For Z-space experiments, we set N = 6.
While, for W-space experiments, we observe thatF can eas-
ily degenerate to a trivial mapping by ignoring conditions c
when N = 6. To prevent the degeneration, we increase N
to 15 for all W-space experiments. For each experiment,
we sample 200k pairs of latent vectors and corresponding
conditions to build the training dataset of F . We apply a
truncation rate of 0.8 to all StyleGAN2 samples. We train
F for 500k iterations with a batch size of 8 using Adam
optimizer [21] with learning rate of 0.0002. For the manip-
ulation, we apply Algorithm 1 with order m = 1 and step
size λ = 0.2 as default.

4.4. Evaluation Metrics

It is difficult to designing comprehensive quantitative
metrics for measuring the disentanglement of latent space
manipulation methods, which often use model-specific
hyper-parameters to control the editing strength. For ex-
ample, Figure 5(b) shows manipulation results of “gender”
from different methods under different editing strength.
Shen et al. [31] use the number of prediction changes to
measure disentanglement among different attributes. How-
ever, comparing only the final results of image manipulation
algorithms can be unfair. When editing strength increases,
some methods tend to over-modify the image, i.e. introduc-
ing unwanted modification. Therefore, for comprehensive
measurement of disentanglement, it is necessary to design
an editing strength-agnostic metric.

4.4.1 Manipulation Disentanglement Score

For a given manipulation goal, a trade-off between accuracy
and disentanglement often exists. Figure 4(a) illustrates the
possible ways to change a blue circle to a green one. For a
both accurate and disentangled manipulation, the color be-



comes green while the shape keeps round. An example of
accurate but entangled manipulation would be changing the
shape to a square when the color turns green.

By gradually increases manipulation strength and cal-
culate the accuracy and disentanglement measure at
each point, we can plot these points on the accuracy-
disentanglement plane to attain a Manipulation Disentan-
glement Curve (MDC). As Figure 4(a) suggests, a method
with an MDC closer to y = 1 indicates overall better dis-
entanglement. In this way, we can compare the MDCs with
each other in different methods.

In reminiscence of ROC curve, we define Manipulation
Disentanglement Score (MDS) as the Area under Curve
(AUC) of an MDC, illustrated in Figure 4(b). A method
with a higher MDS suggests that it has a higher degree of
disentanglement for the given manipulation.

For an experiment of attributes manipulation with N
samples, suppose we can infer the scores of M attributes
in total from an image. We consider an attribute is changed
if the score changes more than 0.5 during the manipulation.
Suppose there are Ns sample which successfully have their
attributes changed to the target attributes. The manipulation
accuracy is then the success rate Ns/N . For sample i, if ni
attributes other than the target attribute have changed, we
can use 1

N

∑N
i=1(1 − ni

M−1 ) as the manipulation disentan-
glement. An alternative way to define manipulation disen-
tanglement is using image similarity, however, we found it
less sensitive to subtle changes like added beards compared
to the image attribute classifier we use. In our experiments
on facial attributes manipulation, we evaluate N = 100
samples for each attribute, and M = 48. We inverse the di-
rection of manipulation for samples that already match the
target attribute so that we can calculate manipulation accu-
racy for every sample.

4.4.2 User Study

In addition to quantitative comparison on MDS, we conduct
a user study in the FFHQ facial attributes experiments to
further evaluate the disentanglement of methods. For each
question of the user study, a user would see a source image
and manipulation results from both our SGF and the Inter-
faceGAN. The user is then asked to choose a result that has
best changed the source image to match a target attribute
while keeping other features unchanged. We use 10 ran-
dom generated images and 10 photos projected to the latent
space of GAN [20]. In total, 20 participants have made 400
preference choices.

4.5. Comparisons on FFHQ-Attributes

Experiments on attributes manipulation compare SGF to
the baseline models in the perspectives of manipulation dis-
entanglement and accuracy defined in Sec. 4.4.1. In Fig-
ure 5(a), we plot the Manipulation Disentanglement Curves

Table 1. MDS comparison on facial attribute editing on
FFHQ-Attributes and CelebaHQ-Attributes. Our SGF method
shows the best overall score in attribute editing experiments on
both FFHQ and CelebaHQ datasets, and significantly outperforms
the compared methods on attributes that tend to be entangled (e.g.
“gender” and “bald”).

MDS on FFHQ-Attributes
Method Gender Bald Smile Black Hair Overall
GANSpace 0.841 0.491 0.248 0.543 0.531
InterfaceGAN 0.808 0.254 0.883 0.938 0.721
SGF (Ours) 0.919 0.590 0.884 0.955 0.837

MDS on CelebAHQ-Attributes
Method Gender Bald Smile Black Hair Overall
InterfaceGAN 0.876 0.442 0.856 0.876 0.758
SGF (Ours) 0.912 0.799 0.896 0.897 0.876

(MDCs) for our proposed SGF with state-of-the-art meth-
ods on four facial attribute editing settings. Our method has
shown a better or comparable disentanglement degree com-
pared with other methods.

From the MDC of “gender” in baseline methods, we ob-
serve a sacrifice of manipulation disentanglement for high
accuracy, which suggests that high manipulation strength
in baseline methods introduces changes in non-target at-
tributes . Figure 5(b) qualitatively compare the results of
editing “gender” attribute. Our method changes “gender”
without side effects such as adding beards. In contrast, both
the InterfaceGAN and GANSpace add non-target proper-
ties to the final results when manipulation strength is high.
We make the same observation on the “gender” MDC in
Figure 5(a): as accuracy increases with the manipulation
strength, the disentanglement degree of all methods except
SGF drops significantly. This suggests that while accuracy
of baseline methods comes at the price of entanglement, our
method is able to achieve high accuracy and disentangle-
ment at the same time.

In Figure 5(c), we qualitatively compare SGF with Inter-
faceGAN and GANSpace on editing other attributes. For
each method and attribute, we use the hyper-parameters in
settings highlighted with green circles in Figure 5(a). For
each highlighted setting, the harmonic mean of accuracy
and disentanglement reach the peak on the curve. while
editing the target attribute, SGF consistently changes the
least number of other properties. InterfaceGAN achieves
similar disentanglement in “smile”, while showing inferior
results in both “bald” and “black hair”. GANSpace shows
inferior results in all settings.

We calculate the AUC for each method and attribute
in Figure 5(a) as the MDS in Table 1. We find some at-
tributes tend to correlate with others, e.g. “bald” often cor-
relates with “gender” (Figure 5(b)). For experiments of
such attributes, our proposed method significantly outper-
forms others. For editing relatively less entangled attributes,
e.g. “smile” and “black hair”, our method has compara-
ble results with InterfaceGAN and outperforms GANSpace.



Figure 5. Comparison of facial attribute editing in the FFHQ-Attributes. (a) The MDCs of methods for each attribute. The point
highlighted with a green circle has highest harmonic mean of accuracy and disentanglement along the curve. (b) “gender” manipulation
results of different methods. Green boxes mark the results that use the highlighted hyper-parameters. (c) Manipulation of other attributes.
We use the highlighted hyper-parameters of each method.

These results also align with the visual perception for each
image in Figure 5(b) and (c). The overall score shows
our method can generally achieve better disentanglement
with high manipulation accuracy than InterfaceGAN and
GANSpace. As GANSpace shows inferior overall perfor-
mance, we only compare our method with InterfaceGAN in
the following experiments.

In our user study for comparison of SGF with Interface-
GAN, 61% of the total queries (244 queries of the total 400
queries) judge our method has a higher degree of disentan-
glement. Combining the results with the experiments on
MDS, we conclude that our method is able to edit attributes
with less entanglement compared with other methods.

4.6. Comparison on CelebAHQ-Attributes

The MDS of CelebAHQ-Attributes data are shown in Ta-
ble 1. Despite using a different GAN model, our SGF still
outperforms InterfaceGAN with a similar margin in each at-
tribute in FFHQ data. These results indicate that our method
can be applied to different GAN models while maintaining
similar performance gains compared to InterfaceGAN.

4.7. Manipulation on Anime-KeypointsAttr

Extending the control conditions to keypoints-attributes,
we demonstrate that SGF can use keypoints and attributes
to jointly control anime faces. Figure 6(a) shows the se-
quential editing results of head poses and facial attributes.
Our model edit images in a stable and disentangled manner
throughout the manipulation process of both keypoints and
attributes.

By fine-tuning each facial keypoint, we can add precise
facial expression control to anime characters. As shown

in Figure 6(b), moving the eyebrows changes the overall
expression from natural to sad in the second column. In
other columns, we controls the mouth and eyes to change
the character’s expressions (e.g., angry or happy).

4.8. Manipulation on Flowers-Caption

To further explore the potential of multi-dimensional
control, we use natural language as control conditions with
the help of sentence embedding. Figure 7 (a) shows that our
method can manipulate the color and the shape of generated
flowers according to the given target captions.

Figure 7(b) shows manipulation results with different
caption compositions. The first row compares the results
using captions with similar meanings. While “large and
red” and “red and large” produce completely different flow-
ers, both results match the target caption. The images in the
second row show the results of color mixing. The manipula-
tion result of “red and purple” is a flower with purplish-red
petals. From caption compositions experiments, we suggest
that our method can leverage the power of sentence embed-
ding to manipulate latent codes.

4.9. Limitations and Discussions

Some limitations exists for SGF despite the compelling
experimental results. Figure 8 shows typical failure cases
of SGF. To begin with, SGF does not cover the case where
target condition is out of the training data distribution. For
an anime image generator trained on aligned face images,
faces with unaligned keypoints are out of the generation
scope. Therefore, for the results of head yaw modifica-
tion using keypoints in Anime-KeypointsAttr dataset (Fig-
ure 8(a)), the edited faces do not exactly match the given



Figure 6. Manipulation in Anime-KeypointsAttr dataset. (a) Sequential editing by keypoints (column 1 to 4) and attributes (columns 5
to 7). Target keypoints are shown as blue dots. (b) Keypoints manipulation for expression control, the second row shows the corresponding
target keypoint conditions.

Figure 7. Manipulation by caption in Flowers-Caption dataset. (a) Latent space manipulation results on Flowers-Caption using
different target captions. (b) Manipulation of Flowers with different caption compositions.

Figure 8. Typical failure cases of our method. Refer to Sec-
tion 4.9 for details.

target keypoints. If the target condition is relatively near
the generation scope, our method tends to stop at a point
with a similar condition. However, an extremely out-of-
distribution target condition may lead to side effects includ-
ing style and color changes (the leftmost and rightmost im-

ages in Figure 8(a)). In addition, there are cases where our
model fails to capture conditions that rarely appear. For ex-
ample, SGF failed to edit flowers in Figure 8(b) because
both captions are uncommon in the training dataset. We
suggest that building a high-quality dataset with diversity
and balanced distribution of condition may be the key to
overcome the above limitations.

5. Conclusions
We proposed a unified approach for latent space manipu-

lation on various condition modalities, showed a higher de-
gree of disentanglement in facial attributes editing and able
to use facial landmarks as well as natural languages to edit
an image. The multi-dimensions control has the potential
application to a wide variety of settings and we hope this
method will provide interesting avenues for future work.
Acknowledgments. We thank Yingtao Tian for helpful dis-
cussions and all reviewers for valuable comments.
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